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Critical states of transient chaos
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One-dimensional maps exhibiting transient chaos and defined on two preimages of the unit i0t&}zaé
investigated. It is shown that such maps have continuously many conditionally invariant measseaing
at the fixed point ak=0 asx’, but smooth elsewhere. Here,should be smaller than a critical valug that
is related to the spectral properties of the Frobenius-Perron operator. The corresponding natural measures are
proven to be entirely concentrated in the fixed point.

PACS numbd(s): 05.45—a, 05.40—a, 05.60-k

[. INTRODUCTION iteration. We assumef is smooth and hyperbolic (1
<|f"(x)|<x) in 1, and 4, or we allow singular behavior
Transient chaos has attracted an increasing interest in thgith infinite slope im}o, ;<1, andx=1. Instead of treating the

last decade due to its connection to diffus[dn-4] and cha-  Frobenius-Perron operator for the dengRV)(x) we deal
otic advection[5,6]. Transiently chaotic behavior develops with  the  measure u®(x)=u®(0x]), where
often in a time period preceding the convergence of the trap(k)([xl,xz])=f§2P(k)(x)dx. Note thatu®(x) is a mono-
ject.ories to an attract_or, or their escape frqm the CO.nSider(_:‘%nically increasi;g function. The upper index refers to the
region of space as 1s the case of chaotic ;catte_rmg. Th iscrete time. The equation of time evolution for the measure
length of this time-period depends on the starting point of thecan be written as

trajectory and is unlimited, there are trajectorg®ugh with

Lebesgue measure zg¢rihat never escape. The behavior of D) =TuMx)=Tou®x) +T®x), (1)

the very long trajectories is governed by the properties of the

maximal invariant set, the chaotic repeller and the naturafvhere the contributions of the two branches are

measure on if7]. This measure is related to the conditionally

. . - - M (x)=,Mrf-1

invariant measurg8], namely the former one is the restric- Tou™(X)= [ o " (x)],

tion of the latter one to the repeller accompanied with a ® ® Hrs—1

normalization to unity thergsee for reviews Refd9] and Ty (x)=p (1) = w7 (0] 2
[10)).

Transient chaos is much richer in possibilities than thel 0 () 0] denotes the lowefuppe) branch of the in-
permanent one. Regarding, e.g., the frequently studied ch¥€rse off(x). Since a portion of the trajectories escapes in
otic systems, the one-dimensioraD) maps, there are rig- €Very step, normalization is necessary to ens_ure_that the it-
orous theorems stating that in case of everywhere expandirfgfaion converges to a certain meadi#e10], which is then
maps exhibiting permanent chaos there exists a unique absgl eigenfunction off, namely
lutely continuous invariant measure. However, this is not any T s 3
more valid in case of transient chaos for the conditionally p(x) =€ “pu(x). 3)
invariant measur¢11], which in many respects takes over
the role of an invariant measure. The main purpose of the
present paper is to further investigate this question. It will be
shown that one has to distinguish between nortnahcriti- £(x)
cal) and critical conditionally invariant measures. While the
first is typically unique, there are continuously many critical
conditionally invariant measures. The latter ones deserve
their name since their corresponding natural measure is de-
generate. Namely, it is nonzero only on a nonfractal subset
of the repeller, on a fixed point in case of 1D maps, we are
going to study in the present paper.

The map generated by the functidfix) is assumed to
map two subintervals, and |, of [0,1] to the whole[0,1]

(see Fig. 1 It is monotonically increasing ihy=[0X,] and L L
decreasing in;=[x,,0], f(0)=f(1)=0 and f(xo) = f(X,) 0 3 2, B
=1. The value of is undefined in %,X4), and we consider

the trajectory being in this interval to escape in the next FIG. 1. Schematic plot of the maf{x).
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The measure is called conditionally invariant measu(the n

notationu without an upper index always refers to that in the T u@=T0u 4 > T1T, 70K, (0), (7)
present papeyand« is the escape rate. The aforementioned k=1
definition of the natural measuteyields its connection tq.
Namely, the natural measurg7] of a nonfractal set
Al w(A)>0] is given by

It can be seen from E@5) that the first term on the rhs ¢7)
gives a contributiorae *0""x“ for smallx. The similar fac-
tor in the sum can also be estimated &§ “u(©
~ae M=Ky Acting on this function byr; a function is

W(A)= lim w(ANT~"0,1]) @ created that is proportional toin the vicinity of x=0, simi-
e w(f70,1) larly to Eq.(6). Therefore,T;Th ™ *u(® yields an asymptotics

e~ “1 for largek under the action oT*~*. Since for largen

The paper is organized as follows. The infinity of the at least one ofi —k andk is large we obtain

coexisting conditionally invariant measures and the general n
condition for criticality are presented in Sec. Il. To get a TnM(O)%ae—)\oanxo_l_z O(e Mov(n-Kg=riky)  (g)
deeper understanding of the conditionally invariant measures k=1

we study the spectrum of the Frobenius-Perron operator in
Sec. II. In Sec. IV we show how maps with critical state areConsequently, in cas&oo<xi(Noo>«1) the first (lasp
connected to each other by singular conjugation, thereby thigrm dominates for larga and smalix and T"u (%) behaves
singular measures are brought into connection with nonsinasymptotically ase™*0"(e™*1"). That means, there is a
gular ones. In Sec. V it is shown that the natural measuresitical value o= «;/\q such that for everyy<o in the
corresponding to critical states are fully concentrated to théimit n—co with normalization in each step we obtain a con-
fixed point atx=0, which is the main property of criticality. ditionally invariant measurex, with leading term propor-
Section VI is devoted to demonstrate some of the results otional tox” atx=0, while in caser> o, we obtainu,. Itis
examples with further discussion. easy to see applyin@ on u4 that k;<\g, Ii. €. 0.<1. The
corresponding escape rates are

[I. CONDITIONALLY INVARIANT MEASURES Ky=\oo if o<o¢, 9

First, we assume thdtis nonsingular in 4 andl, and in )
the second part of this section we shall study the case when Ke=Ky if o>0. (10

the map may be singular with infinit_e SIOp?)m: X0, X=X1 3o the escape rate in cagel o, is determined by the slope
and/orx=1. We shall see that even in the first case there ar¢,, on at the fixed point=0. We consider the system to be
continu_ously many conditionally_invariant measuxe;that critical with respect tqu, if <o, since the density of the
rlave different power law behaviqr,~x” with 0>0 atx  cqrregponding natural measure is a Dirac delta function lo-
=0. In order to show this we study what a measure do Weaeq at the origin, as will be shown in Sec. IV. Deeper
get asymptotically when we st%rt with an initial measuf® understanding of Eq€9) and (10) shall be reached in the
that is smooth but scales ag®(x)~ax” for x<1. (The eyt section by studying the spectrum of

; T 0)_ yo i i
smgle_st EOSSIbIlIty' |s|t0 |Ch?0§ﬁ( )_I\)I( , ng‘lw'” be In the second part of this section, we allow singularities of
used in the numerical calculations. Note t COIe- ¢ .t the maximum point; =f. (1) with i=0,1 andor at

sponds to the Lebesgue meas)uikhe escape rate obtained =~ .

in the asymptotics shall be denoted by. First we study the x=1. Namely, the inverse branches behave as
action of the termd; of T on u(®) separatelyfsee Eqs(1)
and(2)]. It can easily be seen that the leading ternT g (*)
is

=X +Bi(1=x)" if1-x<1, (@D

f i (x)=~1-Cx® if x<1, (12)

T —NQOy O < .
Toax7~ae "o°x” if x<1, ) wherey=1 andw=1. If y>1(w>1) the map has infinite

slope at the maximum pointfco,f(1 (at the pointx=1).
Studying the effect of one iteration on a monotonic function
x(x) that is smooth if0,1) and obeys scaling(x)~ax’ at
x=0 we see that Eq5) remains validTox(x) andT,x(x)
have leading terms with expone#tat x=1,

where\y=log[f’(0)] is the local Liapunov exponent at the
fixed point. On the other hand, sin@e does not take values
of 1 from the vicinity of x=0, T;u(® is smooth with
linear behavior

Tiu@=bx if x<1. (6) Tix(X)=Tix(1)—bi(1—x)¥, i=0,1

ThereforeTou(?) dominates inTou(®+ T, if o<1, and F1-x=<1. (13

Tou(® andT; 1) both scale linearly near=0 if s=1.So | () scales ag/(x)~ x(1)— b(1—x)"” nearx=1 then act-

the scaling ofu(?) at x=0 is retained ife<1. That is why ing by T, on it the result scales as

we expect that the conditionally invariant measure and the !

corresponding escape rate may dependron Tix(X)~cx?  with B=go if x<1. (14)
Turning to the asymptotics for large time we rewrite the

nth iterate as Consequently, starting with a(x) that satisfies



PRE 61 CRITICAL STATES OF TRANSIENT CHAOS 2545

x(X)~ax? if x<1, (150  [see Eqs(1) and(2)], namely, they are monotono(sositive
definite functions. To get further insight into the appearance
Y(X)~x(1)=b(1—x)¥ if 1 —x<1 (16) of the upper values, of the parametewr specifying the
critical measures, we study more general eigenfunctions of
Ty retains these properties éf< 3. the operatorT. We allow thatf may have singularity ax
We start with gu(® in a class given by Eq¢15) and(16) =%, x=%,, and/or inx=1, as in the second part of the

and investigate Eq.7) similarly to the case of maps nonsin- previous section. However, for sake of simplicity here we

gular inlg,l;, which maps correspond to the cgse 1. By  also assume that the inverse branches of the map are ana-

Eg. (5) we obtain again thatTgu®~ae ™0"x” and |ytic, so ¢ ande in Egs.(11) and(12) [and thereby in Eq.

T0 *u@~ae ov(""Wxe near x=0. According to Egs. (14)] are integers. We also assume, as it is typical, that there

(13) and (14) Tng’k,u(O) belongs to the class of functions is a discrete spectrum of the Frobenius-Perron operator in the

defined by Eqs(15) and(16) with o= . Its iterates byT"*  space of analytic functions. This has been proved for certain

decay proportionally te™“#* for largek. Since for largen ~ one-parameter families of map$2—-14,1Q.

eitherk or n—k is large, we finally estimat&”x(®) using Eq. We shall see that for any value afan expansion in terms

(7) as of the basis functionFox ™" andx#*" with n=0,1, ... is
convenient for the search of eigenfunctions. Therefore we

i start from the form

Tn,ug(o)wae_"o‘mx"-i- E O(e_)‘og(n_k)e_Kﬁkx)_ (17)
k=1 N(o)—1 %

That means, the border value of is now o= kz/\g. In b= z«o CnTOXﬁn“Lgfo dax?71, (20
caseo <o, we obtain a conditionally invariant measyug.
belonging to the class of functions given by E¢s5 and
(16), while in cases> o we obtain the conditionally invari-
ant measurguz, which belongs to the class given by Egs.
(15 and(16) with o= 3. Applying T on uz one can easily
see thatk ;<\, i.e. 0.<. The corresponding escape rates

whereN(o)= B— o if o is integer, andN(o) = otherwise.
The limitation by N(o) is necessary ifr is integer, since
Tox”™" can be expanded on the basis functiofis' if o
+n is an integer greater or equal B Note that

are oo
o+n_ o+
Ky=Noo if o<oq, (18) Tox™" "= 2, gex” ™. (2D)
Ko=xp i 0>0%. 19}t aiso follows that
Again the escape rate in casel o is determined alone by (o)
the slope of the map at=0 and the measure belonging to Omn=€ "° if m=n, (22
such ao represents a critical state. Let us emphasize that
while there is a continuum infinity of critical conditionally Omn=0 if m<n, (23

invariant measures the noncritical one is unique.

It seems to be impossible to determine the full basin ofand the basis functions in the first sum of E20) are trans-
attraction of the conditionally invariant measures. In theformed by T, as
class of functions that are monotonic and smoothdrl)

those belong to the basin of attractionof with o<o that o
(i) scale asax” at x=0 and not slower tham(?(1)—b(1 ToToX" "= S g Tox?* ™. (24)
—x)?® at x=1, or (ii) scale faster thamx® at x=0 and m=0

scale asu(®(1)—b(1—x)'® atx=1.
The basin of attraction gf ; consists of the functions that The transformation byl; can be obtained similarly to Eq.
scale faster thanx’c atx=0 and faster thap(9(1)—b(1  (14),
—x)%/® atx=1.
Note that the possible singular behavior of the noncritical o
conditionally invariant measure is determined completely by T Tox "= H, XA+ (25
the map. The behavior of critical conditionally invariant m=0
measures on the right-hand side is also determined by the
map. By this reason we classify these critical measures b¢learly, the basis functions in the second sum of Q) are
the behavior neax=0. Their leading term ak=0 is ana- transformed byT in the way
lytic when ¢ is integer. The number of such measures is
[o.], where[ ] denotes integer part. lf=w=1 then[ o] *
=0. TxPn= EO QP *™. (26)
-

Ill. EIGENVALUE SPECTRUM . .
As seen from Eqs(24), (25), and (26) the iteration of the

The conditionally invariant measures obtained in the prevectorsc,d formed from the expansion coefficients in Eq.
vious section are particular eigenfunctions of the oper@tor (20) under the action o can be described as
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c G 0\/c IV. CONJUGATION

T(d) _<H Q)( ) @7 It can be seen that all critical systems can be brought to
the same form by the application of smooth conjugation. For

where G is a matrix constructed from the coefficiergs,,  this purpose a conjugation functianhas to be introduced,
but with truncation to siz&l(o) X N(o) if o is integer. which is smooth everywhere exceptir 0 andx=1, where

In casec=0 only Q is in effect, so the eigenvalue prob- it may be singular. These singularities can be characterized
lem yields the eigenvalued ;, of Q and corresponding by the exponents; and «:
eigenfunctionsp; ,,, whose expansion starts wigh. On the

other hand, sinc& is a triangular matrix its leading eigen- u(x)~x" if x<1, (32)
value ise 107 [see Eqs(22) and (23] that belongs to an "
eigenvector denoted hy, . Finally, an eigenfunctionp,, of u(x)~1-(1=x)* if 1 —x<1. (32)

T with anx” scaling atx=0 can be obtained in the form of

Eq. (20) with eigenvalueA . and coefficients By definition, the conjugation transforms the map and the

measure in the following way:
C=Cs, d:(gOO_Q)_lHCa—r (28) 'f;l(x):u{frl[ufl(x)]}, (33)

where A ,=gg,=e 07, except the special cases wheris ~ 4
an integer greater or equal # or A, coincides with an p(x)=pulu(x)]. (34)
eigenvalueA z , of Q. Thereby, we have obtained besides
the assumed discrete spectrum of analytic eigenfunctions
almost continuous spectrum @f Most of these eigenfunc-
tions have nonanalyticity due to noninteger valuesof

The next important question is, how the conditionally in-
variant measures can be selected from these eigenfunctio
A measure should be non-negative for any set, so the condr:
tion is that ¢(x) should be monotonous. This is ensured
when it can be generated starting from a monotonou
»(O(x) as the limit of iterationT"¢(®)(x), normalizing it in

To see how the conjugation changes the exponents important
om the point of view of criticality, transformatio(84) has

to be applied to the conditionally invariant measure, and
transformation(33) to the branches of the inverse map. The
conditionally invariant measure is in the class of functions
ven by Eqgs(15) and(16) and the branches of the inverse
ap are described in Egéll) and (12). The conjugation
results in the following transformation rules for the charac-
?erizing exponents:

each step. We can study this condition using the above re- -

sults. After one iteration of a general monoto® with =, (35
O(x?) scaling atx=0 the iterateT ¢(*) is a linear combina- “«

tion of the basis functiondox?*" and x#*" with n=0. o

Therefore the limit of infinite iterations yields the eigenfunc- w=a—, (36)
tion that has the largest eigenvalue among the eigenfunctions 7

that can be expanded on this basis. That one is the eigenfunc- ~

tion ¢, if A,=e 107>A,, ie., o<—log(Agg/No. On No=MAo7, (37)
the other hand, when starting with an initia{®) with O(x?)

scaling atx=0 we do not get terms with any smaller expo- pa E_ (38)
nent, thereby we obtain the eigenfunctign ,. Therefore, 7

the correspondence between these eigenfunctions and the ) o
conditionally invariant measures and between the eigenvafrom these transformation rules it is clearly seen that by the

ues and escape rates can be described as application .o.f the appropriately chosen any two_of the
three quantities), o ando can be set to unity. This means
bo=ty, Ay=€ %0 if 0<o.=kg/\g, (29 all critical systems can be brought to the same form, which
shows that criticality is the same, regardless it is caused by
bpo=mp, Ago=e . (30) tht? singular measure or the singularity of the mapxin

=Xp, X=Xq, andx=1.

The spectrum of the Frobenius-Perron operator allowing It is worth noting that any conditionally invariant measure
singular eigenfunctions has been studied for piece-wise linean be chosen as conjugating function. The conjugation in
ear maps by MacKernan and Nicoli$5]. Except the tent this case results in the equivalent map, which has the Le-
map, they considered eigenfunctions singular at internabesgue measure as a conditionally invariant one. Such maps
points of the interval. They pointed out the existence of thewill be called Lebesgue maps in the following. The equiva-

continuous parts of the spectrum, but did not raise the queggt Lebesgue map will be denoted By, if the condition-

tion of the possible monotonous property of the eigenfun(;-a”y invariant measure chosen for the conjugatiop s i.e.,

tions for a region of eigenvalues, which has been our maife measure decaying at=0 with the exponentr. Natu-
concern here. . . ) ~
rally, the Lebesgue measure is not singulaxin0, so o

Finally, we note that singular eigenfunctions of the gen- : g : ) .
y g 9 g =1. Moreover, since the conditionally invariant measure is

eralized Frobenius-Perron operator have been of importance toticall tional 1o (43)% in x=1. th :
in the thermodynamic formalism to describe phase transitioff>yMptotically proportionafto (Fx)¥in x=1, the conjuga-

like phenomena, where the “temperature” has played théion sets the exponent to unity, too, so after the conjuga-
role of the control paramet¢i6,17]. tion botho and ¢ are equal to unity. However, if criticality
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is in existence, i.eg<oe, thanw will be greater than one, =MC.(1)7>0, (42
i.e., the equivalent Lebesgue map is singulaxial. It is

as conditionally invariant measures. It can also be shown that this measure is equal to unity.

For this purpose the features of the conjugation to an equiva-

lent Lebesgue map have to be used. Let us choose as the

conjugating function the noncritical conditionally invariant
During the investigations of the piecewise parabolic mapmeasureus, where 3= . The conjugation results in the

it was found that the natural measure of the fixed point amapf‘®, which is characterized by exponents=1 andw

x=0 is positive when the Lebesgue-measure as initial mea= 8. The index (8) in the following will be omitted. Anyu,,

sure was iteratefL8]. Numerical results suggested, and |aterconditionally invariant measure transforms inig, where
it was supported by analytical considerations that this mea~

sure is not only positive but is equal to unit$8,19. We o=olf. Neither u no.r.|ts EonLugated pair, the Le-
shall prove here that this phenomenon is quite a generdl€Sgue measure are critical, 6o <1 must hold for any
property: for any map with critical conditionally invariant critical u; measure. Sinceu, is Lebesgue measure, the
measure the natural measure of the fixed poinkaD is /(1) total length of thenth preimage set of the unit inter-
equal to u_nlity. o . val | is equal to its measure with respect #q. This fact
Sincef, ~ has a finite slope™ atx=0, makes the exact determination &f(1() possible. Since
u[f"(A)]=T"u(A)=e “"u(A) for any setACI and u

f—ﬂ(x) n—ow o\ : :
eO*AonX — C(X), (39) conditionally invariant measure

V. PROPERTIES OF THE NATURAL MEASURE

Ch(x)=
ZAM) =T M]=e xM=e™%" (43
where 0<C_(x) <. Furthermore, the critical conditionally

invariant measure. is asymptotically proportional ta holds. Now, we can calculate the natural measure concen-

that is trated in the fixed point at=0 for 3, o <o critical con-
ditionally invariant measures. For this purpose we can use
1u(x) X0 Eq. (41). Since, provided thak<n, T{?=[07f,%(1)] and
m(x)= o M, (40 Tm=r0oF;X1)INTMU[F;%(1),NT™, we can write that
S iy : wi(18NTM)

whereo <o, andM is finite and positive. We introduce the ({0} = lim lim == 0

following notation for the set of the preimages of the unit 7 koonoe  (TM)

interval | =1{=[0,1]. The first two preimage intervals are

IN=f,1(1) and1{Y=f;%(1). Similarly, the @i+ 1)th pre- _ 1

i (n+1) = lim — ——. (49

images can be generated from timeth ones asl; Koo wi{[Fo k1), 1nTM

=511y and 10 V=71(1™). The set of all then-th 1+ lim

i i " e wA[0Fo (D)INT™
preimages of is denoted byl(W=uU2 ;%W We want to v #il0fg )

determine the natural invariant measure of a single point, th?he measur§L~{[Of‘k(1)]ﬂT(”)} can be treated similarly
fixed point located ak=0, a series of intervals containing as u[f"(1)] ig Eq (042).

this point must be found, whose limit is the fixed point itself. 0 ' '
The natural measure of the fixed point is equal to the limit of

~ _rnF-k T =7~ (T
the series of the natural measures of these intervals. The HALOFo (D INT}= 5 (167)

series of the leftmost intervals of theh interval sets is an =m[C (1)e*Xon]E (1)Tre7§07rn

appropriate and convenient choice, so the natural measure of " " '

x=0is (45
w1801y The expressionu;{[T,%(1),1]NT™} is the measure of an

p({0}) = lim »(1§9) = lim lim

(41)  interval set located inf,%(1),1] with total length not
1 (M) 0
Kk— o0 K—oon—oo M -

greater thare™ “1", which is the length of theth preimage
since p(180N1M)> u(10) k<n, we estimate the natural interval set. This measure is not greater than the maximum of

. . the measure of such interval sets. Since for any fixed Value
measure from below by keeping only the leftmost interval. T2, o o
From the criticality and Eq€40) and (39) follows there exist qu- ‘max(k) finite upper bound of the derivative of
the conditionally invariant measure ﬂrﬁgk(l),l],

oo = tim MLl

(™) RALf (1) UNTM) <Rt (e ™" (46)

Cn Ao Using inequalitieg45) and(46) and thatk ;o< due to the
= lim MCo(1)e TTICy(1)7e 70 criticality, the limit of the fraction in the denominator of the
n—oo e " right hand side of Eq(44) is equal to zero, so
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FIG. 2. Numerical results fok, in case of the mag53) with FIG. 4. Numerical € ) and theoretica{dashed lingresults for

R=1.5 andd=0(+),d=0.5(x),d=1(<); and the theoretical re- «, in case of the mag55).
sults(9), (10), (18), (19) (dashed linesfor the same values af.
besgue measure represents the critical state. The density of
7,;({0}):1 (47 its corresponding natural measure d6x+0). In this Le-
besgue map the density of the measure of the coarse grained
wheneverz: is a critical conditionally invariant measure. repellerl™ is given by thenth iterate ofP(®(x)=1 by the
Now, we prove that not only the conjugated natural measuregdjoint of the Frobenius-Perron equation:
but the original one is concentrated in the fixed point, too.

We have already seen that for any fixed . glfx)] if T9(x) e[0,1], 50
L7g= Lo~ 50
s (1§0T0) ° TR0,
lim W = (48)
e W) This equation hag(x+ 0) as eigenfunction with eigenvalue

i i i KO ~f(0) ;
Since the conjugation does not change the measure of ar‘?‘%/ —d+/r<1jx(1;) (X)[x=0. Our result(47) amounts to proving
single interval, i.e.u,(I™)=72=(T™), the same equation o L "P™(x) converges to5(x+0) whenn—c. This

gl' for th RN t éLU ' 'h' h q convergence property has been assumed previously sup-
applies for the nonconjugated map, which means ported by numerical calculations and also some of its conse-

vy({0h)=1 (49  duences have been exploitgiB,19,11.
7 From Eq.(49) follows thatA o=\, where\ is the average
for any critical measures. Liapunov exponent, and the Kolmogorov-Sinai entrépis

By using this critical measure as conjugating function onezero for the natural measure in the critical case. The equa-
can get the equivalent Lebesgue méf’ where the Le- tUONS

2.5 1 T T T T T T T T k=o\, K=0 (51)
P ", 351
(x) oL ] T
Pe) 3 [
25|
2 =
15 |
1
O 1 1 1 1 1 1 1 1 1 05 -
0O 01 02 03 04 05 06 07 08 09 1
X
O - 1.
FIG. 3. The densities of the conditionally invariant measures of 0 01 02 03 04 05 06 07 O'BXO'Q 1
the map(53) with d=0,0=0.2 (dotted ling; d=0.5,0=0.4 (short
dashey d=1,0=1.2(long dashes d=1,0=2 (solid line); and the FIG. 5. The conditionally invariant densities of the mggb)

constant density of the Lebesgue measure obtained numerically favith ¢=0.5 (dotted ling, c=1 (dashed-dotted line =2 (short
o=1 and all the three values df (dashed-dotted line dashel o=3 (long dashes ando=4 (solid line).
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valid for the critical states are the counterparts of the generparts, according to the value @. Let us start with 6=d
alized Pesin relation <1, whenB=w=1. The value ofk ;= x;=logR is exactly
known, therefore
k=A—K (52
Kg logR
valid for noncritical states, obtained by Kantz and Grass- 7N, 2 (54)
berger[7,20]. logR+ Iogm
Finally we note, that the majcan be considered to be the
reduced map of a translationally invariant map of the reaNumerical results fok,, fit to Egs.(9) and(10), as seen in
axis[21-23,2,4. Then the diffusion coefficient can be writ- Fig. 2. Figure 3 shows some of the numerically obtained
ten as an average over the natural measure of the reducednditionally invariant densities.
map[11]. This in case of critical state obviously results ina In the cased=1 obviously B=w=2. Then kg is not
zero diffusion coefficient. In the noncritical state there areknown exactly, but it can be determined numerically. Nu-
important connections between the diffusion and the formulamerical calculation forR=1.5 gave xz~0.60 and o,
(52) [1,24,25. = kzllogR~1.48. Accordingly to the results of Sec. Il con-
ditionally invariant measures were found fex o and val-
V1. EXAMPLES ues ofk, fit to Egs.(18) and(19) (see Figs. 2 and)3How-
ever, critical slowing down of convergence is seen near
In this section, we demonstrate the properties we have Another map was constructed for that=1 and 8=w
found along with further discussion. As an example consider=4. Its inverse branches are

the map whose inverse branches are « Xt
fol(x)=5— =, 55
Ca 1td o d s 0o WTRTQ 59

0 (X)=—5gX s (53 9

i x=1- 7,

1-d d Q

—1y— 2

L 00=1=Zpx= 2% where R>1 and Q=4R. In the numerical calculation®

=1.25 andQ=40 was used. The Lebesgue measure is again
whereR>1 and—1<d<1 must hold. The casé=0 cor- ©ne of the conditionally invariant measures with escape rate

; =logR. From the numerical value ;~0.730 follows that
responds to the case of the tent map and the eigenvgjue “1~ ; B
—(2R)“ has been already given by REL5). Eq. (29) for ~ ¢ Kp/l0gR=3.27. Numerical values ok, are compared
d=0 shows in which region one can connect this eigenvaluéo the theoretical values in Fig. 4. Presence of the condition-
with the escape rate. The map is conjugated to the symmetr ly invariant measure that is smooth at least in the inside of
piecewise parabolic maj26,18,19,11 For the sake of sim- 1] was checked numerically at several val_ues_oof/vith
plicity we limit our discussion to non-negative valuesdf o< 0¢ anld _at?:(f‘ Among them ;hedone.s.wnhflr;]te?er
Substituting the inverse branches into the Frobenius—Perrolf’f"“’e ana y;lc ea Ang tt_erm ?tzo' The enS|t|¢s O.t e latter
equation, one can immediately see that the Lebesgue me8Nes together with a singular one are seen in Fig. 5.
sure is a conditionally invariant measure with the escape rate
x,=logR, independently of the value af. Similarly, the ACKNOWLEDGMENT
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