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Critical states of transient chaos
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One-dimensional maps exhibiting transient chaos and defined on two preimages of the unit interval@0,1# are
investigated. It is shown that such maps have continuously many conditionally invariant measuresms scaling
at the fixed point atx50 asxs, but smooth elsewhere. Here,s should be smaller than a critical valuesc that
is related to the spectral properties of the Frobenius-Perron operator. The corresponding natural measures are
proven to be entirely concentrated in the fixed point.

PACS number~s!: 05.45.2a, 05.40.2a, 05.60.2k
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I. INTRODUCTION

Transient chaos has attracted an increasing interest in
last decade due to its connection to diffusion@1–4# and cha-
otic advection@5,6#. Transiently chaotic behavior develop
often in a time period preceding the convergence of the
jectories to an attractor, or their escape from the conside
region of space as is the case of chaotic scattering.
length of this time-period depends on the starting point of
trajectory and is unlimited, there are trajectories~though with
Lebesgue measure zero! that never escape. The behavior
the very long trajectories is governed by the properties of
maximal invariant set, the chaotic repeller and the natu
measure on it@7#. This measure is related to the conditiona
invariant measure@8#, namely the former one is the restric
tion of the latter one to the repeller accompanied with
normalization to unity there~see for reviews Refs.@9# and
@10#!.

Transient chaos is much richer in possibilities than
permanent one. Regarding, e.g., the frequently studied
otic systems, the one-dimensional~1D! maps, there are rig
orous theorems stating that in case of everywhere expan
maps exhibiting permanent chaos there exists a unique a
lutely continuous invariant measure. However, this is not a
more valid in case of transient chaos for the conditiona
invariant measure@11#, which in many respects takes ov
the role of an invariant measure. The main purpose of
present paper is to further investigate this question. It will
shown that one has to distinguish between normal~noncriti-
cal! and critical conditionally invariant measures. While t
first is typically unique, there are continuously many critic
conditionally invariant measures. The latter ones dese
their name since their corresponding natural measure is
generate. Namely, it is nonzero only on a nonfractal sub
of the repeller, on a fixed point in case of 1D maps, we
going to study in the present paper.

The map generated by the functionf (x) is assumed to
map two subintervalsI 0 and I 1 of @0,1# to the whole@0,1#
~see Fig. 1!. It is monotonically increasing inI 05@0,x̂0# and
decreasing inI 15@ x̂1,0#, f (0)5 f (1)50 and f ( x̂0)5 f ( x̂1)
51. The value off is undefined in (x̂0 ,x̂1), and we consider
the trajectory being in this interval to escape in the n
PRE 611063-651X/2000/61~3!/2543~8!/$15.00
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iteration. We assumef is smooth and hyperbolic (1
,u f 8(x)u,`) in I 0 and I 1, or we allow singular behavior
with infinite slope inx̂0 , x̂1, andx51. Instead of treating the
Frobenius-Perron operator for the densityP(k)(x) we deal
with the measure m (k)(x)5m (k)(@0,x#), where
m (k)(@x1 ,x2#)5*x1

x2P(k)(x)dx. Note thatm (k)(x) is a mono-

tonically increasing function. The upper index refers to t
discrete time. The equation of time evolution for the meas
can be written as

m (k11)~x!5Tm (k)~x![T0m (k)~x!1T1m (k)~x!, ~1!

where the contributions of the two branches are

T0m (k)~x!5m (k)@ f 0
21~x!#,

T1m (k)~x!5m (k)~1!2m (k)@ f 1
21~x!#. ~2!

f 0
21(x)@ f 1

21(x)# denotes the lower~upper! branch of the in-
verse of f (x). Since a portion of the trajectories escapes
every step, normalization is necessary to ensure that th
eration converges to a certain measure@8–10#, which is then
an eigenfunction ofT, namely

Tm~x!5e2km~x!. ~3!

FIG. 1. Schematic plot of the mapf (x).
2543 ©2000 The American Physical Society
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The measurem is called conditionally invariant measure~the
notationm without an upper index always refers to that in t
present paper!, andk is the escape rate. The aforemention
definition of the natural measuren yields its connection tom.
Namely, the natural measure@7# of a nonfractal set
A@m(A).0# is given by

n~A!5 lim
n→`

m~Aù f 2n@0,1# !

m~ f 2n@0,1# !
. ~4!

The paper is organized as follows. The infinity of th
coexisting conditionally invariant measures and the gen
condition for criticality are presented in Sec. II. To get
deeper understanding of the conditionally invariant measu
we study the spectrum of the Frobenius-Perron operato
Sec. III. In Sec. IV we show how maps with critical state a
connected to each other by singular conjugation, thereby
singular measures are brought into connection with non
gular ones. In Sec. V it is shown that the natural measu
corresponding to critical states are fully concentrated to
fixed point atx50, which is the main property of criticality
Section VI is devoted to demonstrate some of the results
examples with further discussion.

II. CONDITIONALLY INVARIANT MEASURES

First, we assume thatf is nonsingular inI 0 and I 1, and in
the second part of this section we shall study the case w
the map may be singular with infinite slope inx5 x̂0 ,x5 x̂1
and/orx51. We shall see that even in the first case there
continuously many conditionally invariant measuresms that
have different power law behaviorms;xs with s.0 at x
50. In order to show this we study what a measure do
get asymptotically when we start with an initial measurem (0)

that is smooth but scales asm (0)(x)'axs for x!1. ~The
simplest possibility is to choosem (0)5xs, which will be
used in the numerical calculations. Note thats51 corre-
sponds to the Lebesgue measure.! The escape rate obtaine
in the asymptotics shall be denoted byks . First we study the
action of the termsTi of T on m (0) separately@see Eqs.~1!
and~2!#. It can easily be seen that the leading term ofT0m (0)

is

T0axs'ae2l0sxs if x!1, ~5!

wherel05 log@f8(0)# is the local Liapunov exponent at th
fixed point. On the other hand, sinceT1 does not take value
of m (0) from the vicinity of x50, T1m (0) is smooth with
linear behavior

T1m (0)'bx if x!1. ~6!

ThereforeT0m (0) dominates inT0m (0)1T1m (0) if s,1, and
T0m (0) andT1m (0) both scale linearly nearx50 if s51. So
the scaling ofm (0) at x50 is retained ifs<1. That is why
we expect that the conditionally invariant measure and
corresponding escape rate may depend ons.

Turning to the asymptotics for large time we rewrite t
nth iterate as
d
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Tnm (0)5T0
nm (0)1 (

k51

n

Tk21T1T0
n2km (0). ~7!

It can be seen from Eq.~5! that the first term on the rhs of~7!
gives a contributionae2l0snxs for small x. The similar fac-
tor in the sum can also be estimated asT0

n2km (0)

'ae2l0s(n2k)xs. Acting on this function byT1 a function is
created that is proportional tox in the vicinity of x50, simi-
larly to Eq.~6!. Therefore,T1T0

n2km (0) yields an asymptotics
e2k1k for largek under the action ofTk21. Since for largen
at least one ofn2k andk is large we obtain

Tnm (0)'ae2l0snxs1 (
k51

n

O~e2l0s(n2k)e2k1kx!. ~8!

Consequently, in casel0s,k1(l0s.k1) the first ~last!
term dominates for largen and smallx andTnm (0) behaves
asymptotically ase2l0sn(e2k1n). That means, there is
critical valuesc5k1 /l0 such that for everys,sc in the
limit n→` with normalization in each step we obtain a co
ditionally invariant measurems with leading term propor-
tional toxs at x50, while in cases.sc we obtainm1. It is
easy to see applyingT on m1 that k1,l0, i. e. sc,1. The
corresponding escape rates are

ks5l0s if s,sc , ~9!

ks5k1 if s.sc . ~10!

So the escape rate in cases,sc is determined by the slope
taken at the fixed pointx50. We consider the system to b
critical with respect toms if s,sc since the density of the
corresponding natural measure is a Dirac delta function
cated at the origin, as will be shown in Sec. IV. Deep
understanding of Eqs.~9! and ~10! shall be reached in the
next section by studying the spectrum ofT.

In the second part of this section, we allow singularities
f at the maximum pointsx̂i5 f i

21(1) with i 50,1 and/or at
x51. Namely, the inverse branches behave as

f i
21~x!' x̂i1Bi~12x!c if 1 2x!1, ~11!

f 1
21~x!'12Cxv if x!1, ~12!

wherec>1 andv>1. If c.1(v.1) the map has infinite
slope at the maximum pointsx̂0 ,x̂1 ~at the pointx51).
Studying the effect of one iteration on a monotonic functi
x(x) that is smooth in~0,1! and obeys scalingx(x)'axs at
x50 we see that Eq.~5! remains valid.T0x(x) andT1x(x)
have leading terms with exponentc at x51,

Tix~x!'Tix~1!2bi~12x!c, i 50,1

if 1 2x!1. ~13!

If x(x) scales asx(x)'x(1)2b(12x)c nearx51 then act-
ing by T1 on it the result scales as

T1x~x!'cxb with b5cv if x!1. ~14!

Consequently, starting with ax(x) that satisfies
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x~x!'axs if x!1, ~15!

x~x!'x~1!2b~12x!c if 1 2x!1 ~16!

Tx retains these properties ifs<b.
We start with am (0) in a class given by Eqs.~15! and~16!

and investigate Eq.~7! similarly to the case of maps nonsin
gular in I 0 ,I 1, which maps correspond to the caseb51. By
Eq. ~5! we obtain again thatT0

nm (0)'ae2l0snxs and
T0

n2km (0)'ae2l0s(n2k)xs near x50. According to Eqs.
~13! and ~14! T1T0

n2km (0) belongs to the class of function
defined by Eqs.~15! and~16! with s5b. Its iterates byTk21

decay proportionally toe2kbk for largek. Since for largen
eitherk or n2k is large, we finally estimateTnm (0) using Eq.
~7! as

Tnm (0)'ae2l0snxs1 (
k51

n

O~e2l0s(n2k)e2kbkx!. ~17!

That means, the border value ofs is now sc5kb /l0. In
cases,sc we obtain a conditionally invariant measurems

belonging to the class of functions given by Eqs.~15! and
~16!, while in cases.sc we obtain the conditionally invari-
ant measuremb , which belongs to the class given by Eq
~15! and ~16! with s5b. Applying T on mb one can easily
see thatkb,l0, i.e. sc,b. The corresponding escape rat
are

ks5l0s if s,sc , ~18!

ks5kb if s.sc . ~19!

Again the escape rate in cases,sc is determined alone by
the slope of the map atx50 and the measure belonging
such as represents a critical state. Let us emphasize
while there is a continuum infinity of critical conditionall
invariant measures the noncritical one is unique.

It seems to be impossible to determine the full basin
attraction of the conditionally invariant measures. In t
class of functions that are monotonic and smooth in~0,1!
those belong to the basin of attraction ofms with s,sc that
~i! scale asaxs at x50 and not slower thanm (0)(1)2b(1
2x)s/v at x51, or ~ii ! scale faster thanaxs at x50 and
scale asm (0)(1)2b(12x)s/v at x51.

The basin of attraction ofmb consists of the functions tha
scale faster thanaxsc at x50 and faster thanm (0)(1)2b(1
2x)sc /v at x51.

Note that the possible singular behavior of the noncriti
conditionally invariant measure is determined completely
the map. The behavior of critical conditionally invaria
measures on the right-hand side is also determined by
map. By this reason we classify these critical measures
the behavior nearx50. Their leading term atx50 is ana-
lytic when s is integer. The number of such measures
@sc#, where@ # denotes integer part. Ifc5v51 then@sc#
50.

III. EIGENVALUE SPECTRUM

The conditionally invariant measures obtained in the p
vious section are particular eigenfunctions of the operatoT
at

f

l
y

he
y

s

-

@see Eqs.~1! and~2!#, namely, they are monotonous~positive
definite! functions. To get further insight into the appearan
of the upper valuesc of the parameters specifying the
critical measures, we study more general eigenfunctions
the operatorT. We allow thatf may have singularity atx
5 x̂0 , x5 x̂1 , and/or inx51, as in the second part of th
previous section. However, for sake of simplicity here w
also assume that the inverse branches of the map are
lytic, soc andv in Eqs.~11! and~12! @and therebyb in Eq.
~14!# are integers. We also assume, as it is typical, that th
is a discrete spectrum of the Frobenius-Perron operator in
space of analytic functions. This has been proved for cer
one-parameter families of maps@12–14,10#.

We shall see that for any value ofs an expansion in terms
of the basis functionsT0xs1n andxb1n with n50,1, . . . is
convenient for the search of eigenfunctions. Therefore
start from the form

f5 (
n50

N(s)21

cnT0xs1n1 (
n50

`

dnxb1n, ~20!

whereN(s)5b2s if s is integer, andN(s)5` otherwise.
The limitation by N(s) is necessary ifs is integer, since
T0xs1n can be expanded on the basis functionsxb1 l if s
1n is an integer greater or equal tob. Note that

T0xs1n5 (
m50

`

gmnx
s1m. ~21!

It also follows that

gmn5e2l0(s1m) if m5n, ~22!

gmn50 if m,n, ~23!

and the basis functions in the first sum of Eq.~20! are trans-
formed byT0 as

T0T0xs1n5 (
m50

`

gmnT0xs1m. ~24!

The transformation byT1 can be obtained similarly to Eq
~14!,

T1T0xs1n5 (
m50

`

Hmnx
b1m. ~25!

Clearly, the basis functions in the second sum of Eq.~20! are
transformed byT in the way

Txb1n5 (
m50

`

Qmnx
b1m. ~26!

As seen from Eqs.~24!, ~25!, and ~26! the iteration of the
vectorsc,d formed from the expansion coefficients in E
~20! under the action ofT can be described as
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TS c

dD 5S G 0

H QD S c

dD , ~27!

whereG is a matrix constructed from the coefficientsgmn
but with truncation to sizeN(s)3N(s) if s is integer.

In casec50 only Q is in effect, so the eigenvalue prob
lem yields the eigenvaluesLb,n of Q and corresponding
eigenfunctionsfb,n , whose expansion starts withxb. On the
other hand, sinceG is a triangular matrix its leading eigen
value ise2l0s @see Eqs.~22! and ~23!# that belongs to an
eigenvector denoted bycs . Finally, an eigenfunctionfs of
T with an xs scaling atx50 can be obtained in the form o
Eq. ~20! with eigenvalueLs and coefficients

c5cs , d5~g002Q!21Hcs , ~28!

whereLs5g005e2l0s, except the special cases whens is
an integer greater or equal tob or Ls coincides with an
eigenvalueLb,n of Q. Thereby, we have obtained besid
the assumed discrete spectrum of analytic eigenfunction
almost continuous spectrum ofT. Most of these eigenfunc
tions have nonanalyticity due to noninteger value ofs.

The next important question is, how the conditionally i
variant measures can be selected from these eigenfunct
A measure should be non-negative for any set, so the co
tion is that f(x) should be monotonous. This is ensur
when it can be generated starting from a monoton
f (0)(x) as the limit of iterationTnf (0)(x), normalizing it in
each step. We can study this condition using the above
sults. After one iteration of a general monotonicf (0) with
O(xs) scaling atx50 the iterateTf (0) is a linear combina-
tion of the basis functionsT0xs1n and xb1n with n>0.
Therefore the limit of infinite iterations yields the eigenfun
tion that has the largest eigenvalue among the eigenfunct
that can be expanded on this basis. That one is the eigenf
tion fs if Ls5e2l0s.Lb,0 , i.e., s,2 log(Lb,0)/l0. On
the other hand, when starting with an initialf (0) with O(xb)
scaling atx50 we do not get terms with any smaller exp
nent, thereby we obtain the eigenfunctionfb,0 . Therefore,
the correspondence between these eigenfunctions and
conditionally invariant measures and between the eigen
ues and escape rates can be described as

fs5ms , Ls5e2ks if s,sc5kb /l0 , ~29!

fb,05mb , Lb,05e2kb. ~30!

The spectrum of the Frobenius-Perron operator allow
singular eigenfunctions has been studied for piece-wise
ear maps by MacKernan and Nicolis@15#. Except the tent
map, they considered eigenfunctions singular at inter
points of the interval. They pointed out the existence of
continuous parts of the spectrum, but did not raise the qu
tion of the possible monotonous property of the eigenfu
tions for a region of eigenvalues, which has been our m
concern here.

Finally, we note that singular eigenfunctions of the ge
eralized Frobenius-Perron operator have been of importa
in the thermodynamic formalism to describe phase transi
like phenomena, where the ‘‘temperature’’ has played
role of the control parameter@16,17#.
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IV. CONJUGATION

It can be seen that all critical systems can be brough
the same form by the application of smooth conjugation. F
this purpose a conjugation functionu has to be introduced
which is smooth everywhere except inx50 andx51, where
it may be singular. These singularities can be character
by the exponentsh anda:

u~x!'xh if x!1, ~31!

u~x!'12~12x!a if 1 2x!1. ~32!

By definition, the conjugation transforms the map and
measure in the following way:

f̃ i
21~x!5u$ f i

21@u21~x!#%, ~33!

m̃~x!5m@u21~x!#. ~34!

To see how the conjugation changes the exponents impo
from the point of view of criticality, transformation~34! has
to be applied to the conditionally invariant measure, a
transformation~33! to the branches of the inverse map. T
conditionally invariant measurem is in the class of functions
given by Eqs.~15! and ~16! and the branches of the invers
map are described in Eqs.~11! and ~12!. The conjugation
results in the following transformation rules for the chara
terizing exponents:

c̃5
c

a
, ~35!

ṽ5a
v

h
, ~36!

l̃05l0h, ~37!

s̃5
s

h
. ~38!

From these transformation rules it is clearly seen that by
application of the appropriately chosenu any two of the
three quantitiesc, v ands can be set to unity. This mean
all critical systems can be brought to the same form, wh
shows that criticality is the same, regardless it is caused
the singular measure or the singularity of the map inx

5 x̂0 , x5 x̂1, andx51.
It is worth noting that any conditionally invariant measu

can be chosen as conjugating function. The conjugation
this case results in the equivalent map, which has the
besgue measure as a conditionally invariant one. Such m
will be called Lebesgue maps in the following. The equiv
lent Lebesgue map will be denoted byf̃ (s), if the condition-
ally invariant measure chosen for the conjugation isms , i.e.,
the measure decaying atx50 with the exponents. Natu-
rally, the Lebesgue measure is not singular inx50, so s̃
51. Moreover, since the conditionally invariant measure
asymptotically proportional to (12x)c in x51, the conjuga-
tion sets the exponentc̃ to unity, too, so after the conjuga
tion both s̃ and c̃ are equal to unity. However, if criticality
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is in existence, i.e.,s,sc , thanṽ will be greater than one
i.e., the equivalent Lebesgue map is singular inx51. It is
obvious that the map has as many equivalent Lebesgue m
as conditionally invariant measures.

V. PROPERTIES OF THE NATURAL MEASURE

During the investigations of the piecewise parabolic m
it was found that the natural measure of the fixed poin
x50 is positive when the Lebesgue-measure as initial m
sure was iterated@18#. Numerical results suggested, and la
it was supported by analytical considerations that this m
sure is not only positive but is equal to unity@18,19#. We
shall prove here that this phenomenon is quite a gen
property: for any map with critical conditionally invarian
measure the natural measure of the fixed point atx50 is
equal to unity.

Since f 0
21 has a finite slopeel0 at x50,

Cn~x!5
f 0

2n~x!

e2l0nx
→

n→`

C`~x!, ~39!

where 0,C`(x),`. Furthermore, the critical conditionall
invariant measurem is asymptotically proportional toxs,
that is

m~x!5
m~x!

xs
→

x→0

M , ~40!

wheres,sc andM is finite and positive. We introduce th
following notation for the set of the preimages of the u
interval I 5I 0

(0)5@0,1#. The first two preimage intervals ar
I 0

(1)5 f 0
21(I ) and I 1

(1)5 f 1
21(I ). Similarly, the (n11)th pre-

images can be generated from then-th ones asI i
(n11)

5 f 0
21(I i

(n)) and I 2n1 i
(n11)

5 f 1
21(I i

(n)). The set of all then-th

preimages ofI is denoted byI (n)5ø i 50
2n21I i

(n) . We want to
determine the natural invariant measure of a single point,
fixed point located atx50, a series of intervals containin
this point must be found, whose limit is the fixed point itse
The natural measure of the fixed point is equal to the limit
the series of the natural measures of these intervals.
series of the leftmost intervals of thekth interval sets is an
appropriate and convenient choice, so the natural measu
x50 is

n~$0%!5 lim
k→`

n~ I 0
(k)!5 lim

k→`

lim
n→`

m~ I 0
(k)ùI (n)!

m~ I (n)!
. ~41!

Since m(I 0
(k)ùI (n)).m(I 0

(n)),k,n, we estimate the natura
measure from below by keeping only the leftmost interv
From the criticality and Eqs.~40! and ~39! follows

n~$0%!> lim
n→`

m@ f 0
2n~1!#

m~ I (n)!

5 lim
n→`

m@Cn~1!e2l0n#Cn(1)se2l0ns

e2kn
ps

p
t

a-
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5MC`~1!s.0, ~42!

so the positive natural measure of the fixed point is prov
It can also be shown that this measure is equal to un

For this purpose the features of the conjugation to an equ
lent Lebesgue map have to be used. Let us choose as
conjugating function the noncritical conditionally invaria
measuremb , whereb5cv. The conjugation results in the
map f̃ (b), which is characterized by exponentsc̃51 andṽ
5b. The index (b) in the following will be omitted. Anyms

conditionally invariant measure transforms intom̃s̃ , where
s̃5s/b. Neither mb nor its conjugated pair, them̃1 Le-
besgue measure are critical, sos̃,s̃c,1 must hold for any
critical m̃s̃ measure. Sincem̃1 is Lebesgue measure, th
l̃ ( Ĩ (n)) total length of thenth preimage set of the unit inter
val I is equal to its measure with respect tom̃1. This fact
makes the exact determination ofl̃ ( Ĩ (n)) possible. Since
m@ f 2n(A)#5Tnm(A)5e2knm(A) for any setA#I and m
conditionally invariant measure

l̃ ~ Ĩ (n)!5m̃1@ f̃ 2n~ Ĩ !#5e2k̃1n5e2kbn ~43!

holds. Now, we can calculate the natural measure conc
trated in the fixed point atx50 for m̃s̃ , s,sc critical con-
ditionally invariant measures. For this purpose we can
Eq. ~41!. Since, provided thatk,n, Ĩ 0

(k)5@0,f̃ 0
2k(1)# and

Ĩ (n)5@0,f̃ 0
2k(1)#ù Ĩ (n)ø@ f̃ 0

2k(1),1#ù Ĩ (n), we can write that

ñ s̃~$0%!5 lim
k→`

lim
n→`

m̃s̃~ Ĩ 0
(k)ù Ĩ (n)!

m̃s̃~ Ĩ (n)!

5 lim
k→`

1

11 lim
n→`

m̃s̃$@ f̃ 0
2k~1!,1#ù Ĩ (n)%

m̃s̃$@0,f̃ 0
2k~1!#ù Ĩ (n)%

. ~44!

The measurem̃s̃$@0,f̃ 0
2k(1)#ù Ĩ (n)% can be treated similarly

asm@ f 0
2n(1)# in Eq. ~42!:

m̃s̃$@0,f̃ 0
2k~1!#ù Ĩ (n)%>m̃s̃~ Ĩ 0

(n)!

5m@C̃n~1!e2l̃0n#C̃n~1!s̃e2l̃0s̃n.

~45!

The expressionm̃s̃$@ f̃ 0
2k(1),1#ù Ĩ (n)% is the measure of an

interval set located in@ f̃ 0
2k(1),1# with total length not

greater thane2k̃1n, which is the length of thenth preimage
interval set. This measure is not greater than the maximum
the measure of such interval sets. Since for any fixed valuk

there exist am̃s̃,max
8 (k) finite upper bound of the derivative o

the conditionally invariant measure in@ f 0
2k(1),1#,

m̃s̃$@ f 0
2k~1!,1#ù Ĩ (n)%<m̃s̃,max

8 ~k!e2k̃1n. ~46!

Using inequalities~45! and~46! and thatl̃0s̃,k̃1 due to the
criticality, the limit of the fraction in the denominator of th
right hand side of Eq.~44! is equal to zero, so
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ñ s̃~$0%!51 ~47!

wheneverm̃s̃ is a critical conditionally invariant measure
Now, we prove that not only the conjugated natural meas
but the original one is concentrated in the fixed point, t
We have already seen that for any fixedk

lim
n→`

m̃s̃~ Ĩ 0
(k)ù Ĩ (n)!

m̃s̃~ Ĩ (n)!
51. ~48!

Since the conjugation does not change the measure of
single interval, i.e.,ms(I i

(n))5m̃s̃( Ĩ i
(n)), the same equation

applies for the nonconjugated map, which means

ns~$0%!51 ~49!

for any critical measures.
By using this critical measure as conjugating function o

can get the equivalent Lebesgue mapf̃ (s) where the Le-

FIG. 2. Numerical results forks in case of the map~53! with
R51.5 andd50(1),d50.5(3),d51(L); and the theoretical re
sults ~9!, ~10!, ~18!, ~19! ~dashed lines! for the same values ofd.

FIG. 3. The densities of the conditionally invariant measures
the map~53! with d50,s50.2 ~dotted line!; d50.5,s50.4 ~short
dashes!; d51,s51.2 ~long dashes!; d51,s52 ~solid line!; and the
constant density of the Lebesgue measure obtained numericall
s51 and all the three values ofd ~dashed-dotted line!.
e,
.

ny

e

besgue measure represents the critical state. The densi
its corresponding natural measure isd(x10). In this Le-
besgue map the density of the measure of the coarse gra
repellerI (n) is given by thenth iterate ofP(0)(x)51 by the
adjoint of the Frobenius-Perron equation:

L1g5H g@ f̃ (s)~x!# if f̃ (s)~x!P@0,1#,

0 if f̃ (s)~x!P” @0,1#.
~50!

This equation hasd(x10) as eigenfunction with eigenvalu
eks5d/dx f̃(s)(x)ux50. Our result~47! amounts to proving
that L1nP(0)(x) converges tod(x10) when n→`. This
convergence property has been assumed previously
ported by numerical calculations and also some of its con
quences have been exploited@18,19,11#.

From Eq.~49! follows thatl05l, wherel is the average
Liapunov exponent, and the Kolmogorov-Sinai entropyK is
zero for the natural measure in the critical case. The eq
tions

k5sl, K50 ~51!

f

for

FIG. 4. Numerical (L) and theoretical~dashed line! results for
ks in case of the map~55!.

FIG. 5. The conditionally invariant densities of the map~55!
with s50.5 ~dotted line!, s51 ~dashed-dotted line!, s52 ~short
dashes!, s53 ~long dashes!, ands54 ~solid line!.
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valid for the critical states are the counterparts of the gen
alized Pesin relation

k5l2K ~52!

valid for noncritical states, obtained by Kantz and Gra
berger@7,20#.

Finally we note, that the mapf can be considered to be th
reduced map of a translationally invariant map of the r
axis @21–23,2,4#. Then the diffusion coefficient can be wri
ten as an average over the natural measure of the red
map@11#. This in case of critical state obviously results in
zero diffusion coefficient. In the noncritical state there a
important connections between the diffusion and the form
~52! @1,24,25#.

VI. EXAMPLES

In this section, we demonstrate the properties we h
found along with further discussion. As an example consi
the map whose inverse branches are

f 0
21~x!5

11d

2R
x2

d

4R2
x2, ~53!

f 1
21~x!512

12d

2R
x2

d

4R2
x2,

whereR.1 and21,d<1 must hold. The cased50 cor-
responds to the case of the tent map and the eigenvalueLs

5(2R)2s has been already given by Ref.@15#. Eq. ~29! for
d50 shows in which region one can connect this eigenva
with the escape rate. The map is conjugated to the symm
piecewise parabolic map@26,18,19,11#. For the sake of sim-
plicity we limit our discussion to non-negative values ofd.
Substituting the inverse branches into the Frobenius-Pe
equation, one can immediately see that the Lebesgue m
sure is a conditionally invariant measure with the escape
k15 logR, independently of the value ofd. Similarly, the
exponentc is equal to unity for any 0<d<1. However,v
and consequentlyb5cv have two possible values depen
ing on d. This makes it sensible to analyze this map in tw
AP
en

et
r-

-

l

ed

e
la

e
r

e
ric

on
a-
te

parts, according to the value ofb. Let us start with 0<d
,1, whenb5v51. The value ofkb5k15 logR is exactly
known, therefore

sc5
kb

l0
5

logR

logR1 log
2

11d

. ~54!

Numerical results forks fit to Eqs. ~9! and ~10!, as seen in
Fig. 2. Figure 3 shows some of the numerically obtain
conditionally invariant densities.

In the cased51 obviously b5v52. Then kb is not
known exactly, but it can be determined numerically. N
merical calculation for R51.5 gave kb'0.60 and sc
5kb / logR'1.48. Accordingly to the results of Sec. II con
ditionally invariant measures were found fors,sc and val-
ues ofks fit to Eqs.~18! and~19! ~see Figs. 2 and 3!. How-
ever, critical slowing down of convergence is seen nearsc .

Another map was constructed for thatc51 and b5v
54. Its inverse branches are

f 0
21~x!5

x

R
2

x4

Q
, ~55!

f 1
21~x!512

x4

Q
,

where R.1 and Q>4R. In the numerical calculationsR
51.25 andQ540 was used. The Lebesgue measure is ag
one of the conditionally invariant measures with escape
k15 logR. From the numerical valuekb'0.730 follows that
sc5kb / logR'3.27. Numerical values ofks are compared
to the theoretical values in Fig. 4. Presence of the conditi
ally invariant measure that is smooth at least in the inside
@0,1# was checked numerically at several values ofs with
s,sc and ats5b. Among them the ones with integers
have analytic leading term atx50. The densities of the latte
ones together with a singular one are seen in Fig. 5.
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